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An important challenge for most chemical companies is to simultaneously consider inventory optimization
and supply chain network design under demand uncertainty. This leads to a problem that requires integrat-
ing a stochastic inventory model with the supply chain network design model. This problem can be formulated
as a large-scale combinatorial optimization model that includes nonlinear terms. Since these models are very
difficult to solve, they require exploiting their properties and developing special solution techniques to reduce
the computational effort. In this work, we analyze the properties of the basic model and develop solution
techniques for a joint supply chain network design and inventory management model for a given product.
The model is formulated as a nonlinear integer programming problem. By reformulating it as a mixed-
integer nonlinear programming (MINLP) problem and using an associated convex relaxation model for
initialization, we first propose a heuristic method to quickly obtain good-quality solutions. Further, a
decomposition algorithm based on Lagrangean relaxation is developed for obtaining global or near-global
optimal solutions. Extensive computational examples with up to 150 distribution centers and 150 retailers are
presented to illustrate the performance of the algorithms and to compare them with the full-space solution.

1. Introduction

Due to increasing pressure for remaining competitive in the
global marketplace, an emerging challenge for the process
industries has become how to manage inventories at the
enterprise level so as to reduce costs and improve customer
service.1,2 A key challenge to achieving this goal is to integrate
inventory management with supply chain network design
decisions, so that decisions such as the number of inventory
stocking locations and the associated amount of inventory can
be determined simultaneously for lower costs and higher
customer service level.

Although supply chain network design problems and inven-
tory management problems have been studied extensively in
recent years,3-8 most of the models consider inventory manage-
ment and supply chain network design separately. On the other
hand, there are related works on supply chain optimization that
take into account the inventory costs, but consider inventory
issues without detailed inventory management policies. In these
models the safety stock level is given as a parameter, and is
usually treated as a lower bound of the total inventory level,9-11

or considered as the inventory targets that would lead to some
penalty costs if violated.12-14 This approach cannot optimize
the safety stock levels, especially when considering demand
uncertainty.15-17 Thus, it can only provide an approximation
of the inventory cost, and therefore lead to suboptimal solutions.
Jung et al.18 introduced a simulation-optimization framework
to estimate the optimal safety stock levels, but the supply chain
design decisions are not jointly optimized.

Recently, Shen et al.19 proposed a joint location-inventory
model that integrates supply chain network design model with
inventory management under demand uncertainty. In their work,
the management of working inventory and safety stock are taken
into account besides the distribution center location decisions.
To solve the resulting nonlinear integer programming problem,
the authors simplified the model by assuming that the uncertain
demand in each retailer has the same variance-to-mean ratio.

Based on this assumption, they reformulated the model as a
set-covering problem and solved it with a branch-and-price
algorithm. The proposed algorithm performs well for large-scale
problems. However, the assumption for identical variance-to-
mean ratios might not provide a good approximation to real
world problems because the demand uncertainties for each
retailer may vary significantly. Thus, to allow the model to
accommodate more general cases, an efficient algorithm is
needed for the model without this assumption.

Lagrangean relaxation and Lagrangean decomposition meth-
ods are recognized as efficient tools for solving large-scale
optimization problems with “special” structures. The Lagrangean
relaxation and subgradient optimization are discussed by
Fisher.20,21 Later, Guignard and Kim22 proposed the well-known
Lagrangean decomposition method that yields stronger bounds
than the Lagrangean relaxation algorithm. A large number of
applications of Lagrangean-based algorithms for supply chain
optimization and related problems have been reported in the
past. Various Lagrangean-based heuristic algorithms for large-
scale facility location problems are discussed by Beasley.23

Based on this work, Holmberg and Ling24 proposed a novel
Lagrangean heuristic method for location problems with stair-
case costs. Sridharan25 implemented the Lagrangean relaxation
method for the plant location problem with consideration of
capacity issues. A Lagrangean relaxation and decomposition
method for multiproduct triechelon supply chain design problem
was proposed by Pirkul and Jayaraman.26 Later, Klose27

developed a relax-and-cut algorithm for the capacitated facility
location problems. The proposed method yielded significant
improvements in computational efficiency. van den Heever et
al.28 developed a Lagrangean heuristic method for the design
and planning of offshore oil fields. A Lagrangean-based
temporal decomposition algorithm for supply chain planning
was proposed by Jackson and Grossmann.12 Recently, Neiro
and Pinto29 applied the Lagrangean-based method to a petroleum
supply chain planning model. The results showed that significant
improvement in computational efficiency can be achieved by
using Lagrangean decomposition.
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The objective of this work is to develop effective algorithms
for large-scale joint supply chain network design and inventory
management problem for a given product. This work relies on
the integer nonlinear programming model proposed by Shen et
al.19 We first reformulate the model as a mixed-integer nonlinear
programming (MINLP) model, and then solve it with different
solution approaches, including a proposed heuristic method that
relies on initialization from convex relaxations and a Lagrangean
relaxation algorithm. The results from the full-scale solution
and those from the various solution strategies are then compared
and analyzed.

The rest of this paper is organized as follows. Some basic
concepts of inventory management with risk pooling are
discussed in section 2. Section 3 presents the problem statement,
while section 4 provides a detailed description of the joint supply
chain network design and inventory management model pro-
posed by Shen et al.,19 stating and defining the objective function
and constraints of the model. The solution strategies including
the MINLP reformulation and the Lagrangean relaxation
algorithm are proposed in section 5. Two small illustrative
examples on a supply chain for liquid oxygen (LOX) are given
in section 6. Section 7 presents the comparison between different
solution strategies and the full-scale model, along with an
analysis of the solution quality. Finally, section 8 concludes on
the performance of the proposed algorithm and the overall
results.

2. Inventory Management Model with Risk Pooling

In this section, we briefly review some inventory management
models that are related to the problem addressed in this work.
Detailed discussions about inventory management models are
given by Zipkin.5

Figure 1 shows the inventory profile in a distribution center
(or any stocking facility) for a given product. As we can see,
the inventory level decreases due to the customer demand, and
increases when replenishments arrive. The reorder point is a
specific inventory level. This means that each time when the
inventory level goes down to the reorder point, a replenishment
order will be placed. The time required from placing an order
until the replenishment arrives at the distribution center is
defined as the ordering lead time. Typically, the total inventory
consists of two parts: working inventory and safety stock. The
working inventory represents products that have been ordered
from the supplier due to replenishment, but not yet shipped out
of the distribution center to satisfy the demand. The safety stock
is the inventory for buffering the system against stockouts due
to the uncertain demands during the ordering lead time.

A popular inventory control policy widely used in practice
is the order quantity/reorder point (Q, r) inventory policy. When

using this policy, each time when inventory level depletes to
reorder point r, a fixed order quantity Q will be placed for
replenishment. When the demand is deterministic with consistent
demand rate, the inventory profile is a series of identical square
triangles as given in Figure 2. Each of these square triangles
has the same height (the order quantity Q), and the same width
denoted as the replenishment interval. The optimal order quantity
and replenishment interval for this deterministic demand case
can be determined by using an economic order quantity (EOQ)
model, which takes into account the trade-off between fixed
ordering costs, transportation costs, and working inventory
holding costs (EOQ model formulation for our model is given
in eq 3 in section 4.1). Although the EOQ model uses the
deterministic demands, it has proved to provide very good
approximations for working inventory costs of systems with (Q,
r) policy under demand uncertainty.30,31 A common approach
for the (Q, r) inventory model, as pointed out by Axsater,30 is
to first replace the stochastic demand with its mean value and
then determine the optimal order quantity Q with the determin-
istic EOQ model, and finally find out the optimal reorder point
under uncertain demand based on the order quantity.

A distribution center under demand uncertainty may not
always have sufficient stock to handle the changing demand. If
the reorder point (inventory level) is less than the demand during
the order lead time, stockout may happen. Type I serVice leVel
is defined as the probability that the total inventory on hand is
more than the demand (as shown Figure 3). If the demand is
normally distributed with mean µ and standard deviation σ and
the ordering lead time is L, the optimal safety stock level to
guarantee a service level R is zR√Lσ, where zR is a standard
normal deviate such that Pr(zezR) ) R.5 We should note that
the acceptable practice in this field is to assume a normal
distribution of the demand, although of course other distribution
functions can be specified.

To consider the total safety stock of an inventory system,
Eppen32 proposed the “risk pooling effect”, which states that
significant safety stock cost can be saved by grouping retailers.
In particular, Eppen considered a single period problem with N
retailers and one supplier. Each retailer i has normally distributed

Figure 1. Inventory profile changing with time.
Figure 2. Inventory profile for deterministic demand with (Q, r) policy.

Figure 3. Safety stock and service level under normally distributed demand.
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demand with mean µi and standard deviation σi, and the
correlation coefficient of demand at retail i and j is Fij.
The order lead time from the supplier to all these retailers is
the same and is given as L. Eppen compared two operational
modes of retailer supply chain: decentralized mode and central-
ized mode. In the decentralized mode, each retailer orders
independently to minimize its own expected cost. Since in this
mode the optimal safety stock in retailer i is zR√Lσi, the total
safety stock in the system is given by

zR√L∑
i)1

N

σi

In the centralized mode, all the retailers are considered as a
whole and a single quantity is ordered for replenishment, to
minimize the total expected cost of the entire system. Since
in the centralized mode all the retailers are grouped, and the
demand at each retailer follows a normal distribution
N(µi,σi

2), the total uncertain demand of the entire system
during the order lead time will also follow a normal
distribution with mean L∑i)1

N µi and standard deviation

(√L)√∑ i)1
N σi

2 + 2∑ i)1
N-1 ∑ j)i+1

N σiσjFij. Therefore, the total
safety stock of the distribution centers in the centralized mode
is

zR√L�∑
i)1

N

σi
2 + 2∑

i)1

N-1

∑
j)i+1

N

σiσjFij

Thus, if the demands of all the N retailers are independent, the

optimal safety stock can be expressed by zR√L√∑ i)1
N σi

2 which

is less than zR√L√∑ i)1
N σi. Eppen’s simple model illustrates the

potential saving in safety stock costs due to risk pooling.
In summary, for an inventory system including multiple

distribution centers operating with (Q, r) policy and type I
serVice leVel under demand uncertainty, the total inventory cost
consists of working inventory costs and safety stock costs. The
optimal working inventory costs can be estimated with a
deterministic EOQ model, and the safety stock costs can be
reduced by risk pooling.

3. Problem Statement

We assume we are given a supply chain consisting of one or
more suppliers and a set of retailers i ∈ I (this can also be
customers or markets; for convenience, we denote this as
“retailer” in the rest of this paper unless specified), together
with a number of candidate sites for distribution centers j ∈ J.
For an example of the network structure, see Figure 4. The
locations of the supplier(s), potential distribution centers, and
the retailers are known, and the distances between them are
given. The replenishment lead time L of each distribution center

is assumed to be the same for all the candidate distribution
centers. This in turn means that the suppliers can be treated
implicitly and lumped into one supplier. There is a fixed setup
cost fj when each distribution center is installed. Each retailer i
has a normally distributed demand with mean µi and variance
σi

2, which is independent of the other retailers’ demands. (The
model can be easily extended to consider correlated demands
in the retailers by modifying the safety stock terms as discussed
at the end of section 2.) Each distribution center can serve more
than one retailer, but each retailer should be only assigned to
exactly one distribution center to satisfy the demand. Linear
transportation costs are incurred for shipments from supplier
to distribution center j with fixed cost gj and unit cost aj and
from distribution center j to retailer i with unit cost dij. Most of
the inventory in the network is held in the distribution centers
where the inventory is managed with a (Q, r) policy with type
I serVice.5 Inventory costs are incurred at each distribution
center, and consist of both working inventory and safety stock.
The retailers only maintain a very small amount of inventory
whose costs are ignored.

The problem is to determine how many distribution centers
(DCs) to install, where to locate them, which DC to assign to
each retailer, how often to reorder for replenishment at each
DC, and what level of safety stock to maintain so as to minimize
the total location, transportation, and inventory costs, while
ensuring a specified level of service.

4. Model Formulation

The joint supply chain network design and inventory man-
agement model of Shen et al.19 is used as the basis for the
present work, in which we will not rely on the assumption that
each customer has identical variance-to-mean ratio. This model
is a nonlinear integer program that deals with the supply chain
network design for a given product, and considers its detailed
inventory management. The definition of sets, parameters, and
variables of the model are as follows:

Sets/Indices
I ) set of retailers indexed by i
J ) set of candidate DC site indexed by j

Parameters
fj ) fixed cost (annual) of locating a DC at candidate site j
dij ) unit transportation cost from DC j to retailer i
� ) days per year (to convert daily demand and variance values

to annual costs)
µi ) mean demand at retailer i (daily)
σi

2 ) variance of demand at retailer i (daily)
Fj ) fixed cost of placing an order from the supplier to the DC

at candidate site j
gj ) fixed transportation cost from the supplier to the DC at

candidate site j
aj ) unit transportation cost from the supplier to the DC at

candidate site j
L ) lead time from the supplier to the candidate DC sites (in

days)
h ) unit inventory holding cost
R ) desired probability of retailer orders satisfied
� ) weight factor assigned to transportation costs
θ ) weight factor assigned to inventory costs
zR ) standard normal deviate such that Pr(zezR) ) R
Decision Variables (0-1)
Xj ) 1 if we locate a DC in candidate site j, and 0 otherwise
Yij ) 1 if retailer i is served by the DC at candidate site j, and

0 otherwise

Figure 4. Supply chain network structure (three echelons).
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4.1. Objective Function. The objective of this model is to
minimize the total weighted cost of the following items:

• fixed cost for locating facilities
• transportation costs from DCs to retailers
• fixed order placing costs, transportation costs from the

supplier to DCs, and the expected working inventory costs
in the DCs

• safety stock costs in DCs
The facility location cost is given by

∑
j∈ J

fjXj (1)

The product of yearly expected mean demand (�µi) and
the unit transportation cost (dij) leads to the annual DC to
retailer transportation costs. If the retailer i is not served by
the DC in candidate location j, the transportation cost is 0.
Hence, the total expected transportation costs from DCs to
retailers can be expressed as

∑
j∈ J

∑
i∈ I

�dijµiYij (2)

As all the retailers have stochastic demands and all the DCs
manage the inventory using a (Q, r) policy with type I serVice
constraint, the working inventory cost can be approximated with
an economic order quantity model (EOQ) with very small error
bound.30,31 Let n be the number of replenishments per year and
D be the annual demand for the product. Thus, the annual costs
of ordering, shipping, and working inventory from the supplier
to the DCs are approximated by

Fn+ �(g+ a
D
n )n+ θhD

2n
(3)

The first term Fn is the total ordering cost per year. The
second term is the annual transportation cost times the weighted
factor (�), where (D/n) is the expected shipment size, and the
shipping cost is given by a linear function V(x) ) g + ax.
The third term is the annual working inventory costs times the
weighted factor (θ), where D/(2n) is the average inventory level
on hand. Considering (3) as a function of annual order number
n, by setting the first-order derivative to 0 with respect to n, we
can obtain the optimal order number n ) √θhD⁄(2(F + �g)).
Therefore, by substituting into (3), the total optimal cost for
replenishments, including ordering, transportation, and working
inventory holding cost is given by

�aD+ √2θh(F+ �g)D (4)

Substituting the demand D with the annual expected demand
of the product in each DC (∑i∈I�µiYij), the total replenishment
costs for all the DCs can be expressed by

�∑
j∈ J

aj∑
i∈ I

�µiYij +∑
j∈ J �2θh(Fj + �gj)∑

i∈ I

�µiYij (5)

As the demand at each retailer follows a given normal
distribution, let µi and σi

2 be the mean and variance of demand
of the product at retailer i. Due to the risk-pooling effect,32 the
lead time demand at each DC is also normally distributed with
a mean of L∑i∈S µi and a variance of L∑i∈S σi

2. Thus, the safety
stock required in the DC at candidate location j to ensure that
stockouts occur with a probability of R or less is

zR�L∑
i∈ I

σi
2Yij (6)

Therefore, the objective function of this model is given by

Min: ∑
j∈ J

fjXj + �∑
j∈ J

∑
i∈ I

�dijµiYij + �∑
j∈ J

aj∑
i∈ I

�µiYij +

∑
j∈ J �2θh(Fj + �gj)∑

i∈ I

�µiYij + θhzR∑
j∈ J �∑

i∈ I

Lσi
2Yij (7)

where each term accounts for the fixed facility location cost,
DC to retailer transportation costs, replenishment costs (includ-
ing supplier to DC transportation costs, fixed ordering costs,
and working inventory costs), and safety stock costs.

4.2. Network Constraints. Two constraints are used to
define the network structure. The first one is that each retailer
i should be served by only one DC:

∑
j∈ J

Yij ) 1, ∀ i ∈ I (8)

The second constraint states that if a retailer i is served by the
DC in candidate location j, the DC must exist:

YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

Finally, all the decision variables are binary variables in this
model:

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yij ∈ {0, 1}, ∀ i ∈ I, ∀ j ∈ J (11)

4.3. INLP Model. Grouping the parameters, we can rear-
range the objective function and formulate the problem to (P0)
as the following integer nonlinear programming (INLP) prob-
lem:

(P0) Min ∑
j∈ J

(fjXj +∑
i∈ I

d̂ijYij +Kj�∑
i∈ I

µiYij +

q�∑
i∈ I

σ̂i
2Yij) (12)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (8)

YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yij ∈ {0, 1}, ∀ i ∈ I, ∀ j ∈ J (11)

where

d̂ij ) ��µi(dij + aj)

Kj ) √2θh�(Fj + �gj)

q) θhzR

σ̂i
2 ) Lσi

2

5. Solution Approach

The joint supply chain network design and inventory man-
agement model ((8)-(12)) is a nonlinear integer program where
all the decision variables are binary variables. Besides its
combinatorial nature, the nonlinear terms are nonconvex, which
makes the optimization model very difficult to solve. In order
to address this problem, previous researchers19,33 have simplified
the model by assuming that the variance-to-mean ratios at all
the retailers are identical, but in the real world this ratio for
each retailer may vary from that for others, and thus an efficient
algorithm is required to solve the model (P0) without the
aforementioned assumption to provide a good approximation
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for real cases. In the next section, we reformulate the INLP
model (P0) as a mixed-integer nonlinear programming (MINLP)
problem with fewer 0-1 variables and solve it with different
solution approaches, including a heuristic method to obtain
“good-quality” solutions very quickly, and a Lagrangean
relaxation algorithm for obtaining global or near-global optimal
solutions.

5.1. MINLP Formulation. The original INLP model (P0)
is very difficult to solve for large instances due to the potentially
large number of binary variables (see Table 2 in section 7 for
examples). As shown in the proposition below, the assignment
variables (Yij) in the model can be relaxed as continuous
variables without changing the optimal integer solution. This
allows us to reformulate (P0) as a MINLP problem with fewer
0-1 variables and most of them appearing in linear form.

Proposition 1. The continuous Variables Yij yield 0-1 integer
Values when (P0) is globally optimized or locally optimized for
fixed 0-1 Value forXj.

Proposition 1 means that the following problem (P1) yields
integer values on the assignment variables Yij when it is globally
optimized or locally optimized for a fixed 0-1 integer value
for Xj.

(P1) Min ∑
j∈ J

(fjXj +∑
i∈ I

d̂ijYij +Kj�∑
i∈ I

µiYij +

q�∑
i∈ I

σ̂i
2Yij) (13)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (8)

YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (14)

The proof, which is given in Appendix A, is based on the
fact that for fixed Xj problem (P1) is a concave minimization
problem defined over a polyhedron, and for which local and
global solutions for fixed integer values of Xj yield integer values
for the continuous variables Yij.

Proposition 1 allows us to solve the MINLP model (P1)
instead of the INLP model (P0), significantly reducing the
computational effort. It is interesting to note that if we set
the unit inventory holding cost h ) 0, the square root terms in
the objective function (13) can be removed and problem (P1)
reduces to the widely studied “uncapacitated facility location”
(UFL) problem,3,4,34,35 which is known to exhibit integer
solutions for relaxed variables Yij. Furthermore, this problem is
also known to be solvable through its LP relaxation for most
instances.

(P1) is an MINLP problem with linear constraints and a
nonlinear objective function including nonconvexities in the
continuous variables. Optimization methods that can be used
for obtaining the global optimal solution of problem (P1) include
the branch and reduce method,36,37 the R-BB method,38 the
spatial branch and bound search method for bilinear and linear
fractional terms,39,40 and the outer-approximation method by
Kesavan et al.41 All these methods rely on a branch and bound
solution procedure. The difference among these methods lies
in the definition of the convex envelopes for computing the
lower bound, and in how to perform the branching on the
discrete and continuous variables. The global optimization solver
that is commercially available is BARON,42 which implements
a branch and reduce solution method.

Since a global optimization algorithm can be expensive,
another alternative is to use an MINLP method that relies on
the assumption that the functions are convex. Although in this
case global optimality cannot be guaranteed, the solutions can
be obtained much faster, because a local optimal solution can
be efficiently be found for a fixed value of the integer variables
(optimal or near optimal). A general review of these MINLP
methods is given in Grossmann.43 Methods include the branch
and bound method,44 generalized Benders decomposition,45

outer-approximation,46,47 LP/NLP-based branch and bound,48

and extended cutting plane method.49 A number of computer
codes are available that implement these methods. The program
DICOPT47 is an MINLP solver that is based on the outer-
approximation algorithm,46 and is available in the modeling
system GAMS.50 It should be noted that this code has a heuristic
termination criterion for nonconvex problems. The code R-ECP
implements the extended cutting plane method by Westerlund
and Pettersson.49 Codes that implement the branch and bound
method include the code MINLP_BB44 available in AMPL, and
the program SBB which is also available in GAMS. Recently,
the open source MINLP solver Bonmin,51 which is part of the
COIN-OR project,52 implements an extension of the branch and
cut outer-approximation algorithm that was proposed by Que-
sada and Grossmann,48 as well as the branch and bound and
outer-approximation method.

5.2. MINLP Reformulation. In order to improve the
computational efficiency of solving the MINLP model (P1) with
the above cited solvers, we present in this section a reformulation
of (P1).

The square root term in the objective function of (P1) can
give rise to difficulties in the optimization procedure. When the
DC in location j is not selected, both square root terms would
take a value of 0, which leads to unbounded gradients in the
NLP optimization and hence numerical difficulties. Thus, we
reformulate the model in order to eliminate the square root terms.
We first introduce two sets of nonnegative continuous variables,
Z1j and Z2j, to represent the square root terms in the objective
function:

Z1j
2 )∑

i∈ I

µiYij, ∀ j ∈ J (15)

Z2j
2 )∑

i∈ I

σ̂i
2Yij, ∀ j ∈ J (16)

Z1jg 0, Z2jg 0, ∀ j ∈ J (17)

Because the nonnegative variables Z1j and Z2j are introduced
in the objective function with positive coefficients, and this
problem is a minimization problem, (15) and (16) can be further
relaxed as the following inequalities:

-Z1j
2 +∑

i∈ I

µiYije 0, ∀ j ∈ J (18)

-Z2j
2 +∑

i∈ I

σ̂i
2Yije 0, ∀ j ∈ J (19)

Thus, the reformulated model can then be expressed as the
following MINLP problem denoted as (P2):

(P2) Min ∑
j∈ J

(fjXj +∑
i∈ I

dˆijYij +KjZ1j + qZ2j) (20)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (8)
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YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

-Z1j
2 +∑

i∈ I

µiYije 0, ∀ j ∈ J (18)

-Z2j
2 +∑

i∈ I

σˆi
2Yije 0, ∀ j ∈ J (19)

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (14)

Z1jg 0, Z2jg 0, ∀ j ∈ J (17)

(P2) can be trivially shown to be equivalent to (P1) but with
linear objective function and quadratic terms in the constraints
(18) and (19). As shown in Appendix A, the following property
can be established for problem (P2).

Proposition 2. The global optimal solution of problem (P2),
or a local optimal solution with fixed 0-1 Value for Xj, has all
the continuous Variables Yij take on integer Value (0 or 1).

5.3. Heuristic Algorithm. Since problem (P2) is a noncon-
vex problem, the solution is highly dependent on the starting
point when using an MINLP solver that relies on convexity
assumption. To obtain a “good” feasible starting point, we first
relax the nonconvex nonlinear constraints (18) and (19) in (P2)
by replacing the concave terms with their corresponding secants,
which represent the convex envelopes53 of these functions. From
(15) and (16), it is easy to see that the lower bounds Z1j and

Z2j are both 0, and their upper bounds are √ΣiεIµi and √∑iε1 σ̂i
2,

respectively.
Therefore, the secant of (18) is given by

-�∑
i∈ I

µiZ1j +∑
i∈ I

µiYije 0, ∀ j ∈ J (21)

Similarly, the secant of (19) is given by

-�∑
i∈ I

σ̂i
2Z2j +∑

i∈ I

σ̂i
2Yije 0, ∀ j ∈ J (22)

In this way the convex relaxation of model (P2) can be
formulated as problem (P3):

(P3) Min ∑
j∈ J

(fjXj +∑
i∈ I

σ̂ijYij +KjZ1j + qZ2j) (20)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (8)

YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

-�∑
i∈ I

µiZ1j +∑
i∈ I

µiYije 0, ∀ j ∈ J (21)

-�∑
i∈ I

σ̂i
2Z2j +∑

i∈ I

σ̂i
2Yije 0, ∀ j ∈ J (22)

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (14)

Z1jg 0, Z2jg 0, ∀ j ∈ J (17)

(P3) is a mixed-integer linear programming (MILP) problem
which is the convex relaxation of problem (P2). The optimal
solution of variables Xj and Yij of problem (P3) is a feasible
solution of problem (P2) due to the linear constraints (8) and
(9), and it can provide an initial point before solving (P2) with
an MINLP solver. In this way, we can greatly speed up the
computation and enhance the likelihood of obtaining a near-

optimal solution of model (P2). In summary, the heuristic
algorithm for obtaining a good-quality solution with reasonable
computational effort by using MINLP solvers that rely on
convexity assumptions is as follows:

Algorithm 1: (Heuristic Algorithm)
Step 1: Solve the MILP model (P3).
Step 2: Use the optimal values of variables Xj and Yij obtained

from Step 1 as the starting point, and solve problem (P2) with
an MINLP solver that relies on convexity assumptions (such
as DICOPT, SBB, R-ECP, MINLP_BB, and Bonmin) for
obtaining a near-optimal solution.

Note that if we solve problem (P2) with Algorithm 1 by using
an MINLP solver that relies on convexity assumptions, the
optimal solution may not be globally optimal. However, the
optimal solution still has all the Yij variables at integer values
based on Proposition 1 (see Appendix A for details). Further-
more, the solution obtained by using heuristic Algorithm 1 for
problem (P2) is also a feasible solution of problem (P1).

5.4. A Lagrangean Relaxation Algorithm. In order to
obtain potentially better solutions, we propose a Lagrangean
relaxation algorithm for obtaining global optimal or near global
optimal solutions of model (P2).

5.4.1. The Decomposition Procedure. In the Lagrangean
relaxation algorithm, we use a “spatial” decomposition scheme
by dualizing the assignment constraints (8) in (P2) using the
Lagrangean multipliers λi, which is similar to the works by
Beasley23 and Daskin et al.33 As a result, we obtain the following
relaxed problem (denoted by P(λ)):

(P(λ)) V)Min ∑
j∈ J

(fjXj +∑
i∈ I

(d̂ij - λi)Yij +KjZ1j +

qZ2j)+∑
i∈ I

λi (23)

s.t.

YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

-Z1j
2 +∑

i∈ I

µiYije 0, ∀ j ∈ J (18)

-Z2j
2 +∑

i∈ I

σ̂i
2Yije 0, ∀ j ∈ J (19)

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (14)

Z1jg 0, Z2jg 0, ∀ j ∈ J (17)

where V is the objective function value. Next, we observe that
(P(λ)) can be decomposed into |J| subproblems, one for each
candidate DC site j ∈ J, where each one is denoted by (Pj(λ))
and is shown for a specific subproblem for candidate DC site
j* as follows:

(Pj*(λ)) Vj* )Min fj*Xj* +∑
i∈ I

(d̂ij* - λi)Yij* +Kj*Z1j* +

qZ2j* (24)

s.t.

Yij*eXj*, ∀ i ∈ I

-Z1j*
2 +∑

i∈ I

µiYij*e 0
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-Z2j*
2 +∑

i∈ I

σ̂i
2Yij*e 0

Yij*g 0, ∀ i ∈ I

Xj* ∈ {0, 1}

Z1j*g 0, Z2j*g 0

Subproblem (Pj(λ)) has one binary variable (Xj*), |I| + 2
continuous variables (Z1j*, Z2j*, Yij*) and 2|I| + 2 constraints.
Because we have |J| subproblems (Pj(λ)), and one for each
candidate DC site j ∈ J, we call it a “spatial” decomposition
scheme, i.e., decomposition by the spatial structure of the supply
chain network.12,26 Let Vj denote the globally optimal objective
function value of problem (Pj(λ)). As a result of the decomposi-
tion procedure, the globally optimal objective function value
of (P(λ)), which corresponds to a lower bound of problem (P2),
can be calculated by

V)∑
j∈ J

Vj +∑
i∈ I

λi (25)

For each fixed value of the Lagrangean multipliers λi, we
solve problem (Pj(λ)) by globally minimizing (24) for each
candidate DC location j (e.g., using BARON). Then, based on
(25), the optimal objective function value of problem (P(λ))
can be calculated for each fixed value of λi. Using a standard
subgradient method20,21 to update the Lagrangean multiplier λi,
the algorithm iterates until a preset optimality tolerance is
reached.

5.4.2. Lagrangean Relaxation Subproblems. In each itera-
tion with fixed values of the Lagrange multipliers λi, the design
variables (Xj) are optimized separately in each subproblem
(Pj(λ)) in the aforementioned decomposition procedure. For each
subproblem (Pj(λ)), we can observe that the objective function
value of (Pj(λ)) is 0 if and only if Xj ) 0 (i.e., we do not select
DC j). In other words, there is a feasible solution that leads to
the objective function value of subproblem (Pj(λ)) equal to 0.
Therefore, the globally minimum objective function value of
subproblem (Pj(λ)) should be less than or equal to 0. Given
this observation, it is possible that under some value of λi (such
as λi ) 0, i ∈ I) the optimal objective function values for all
the subproblem (Pj(λ)) are 0 (i.e., Xj ) 0, j ∈ J, we do not
select any DC). However, the original assignment constraint
(8) implies a redundant constraint that at least one DC should
be selected to meet the demands, i.e.

∑
j∈ J

Xjg 1 (26)

Once constraint (8) is relaxed, constraint (26) becomes “not
redundant” and should be taken into account in the algorithm.23,26

To satisfy the constraint (26) in the Lagrangean relaxation
procedure, we make the following modifications to the afore-
mentioned step of solving problem Pj(λ) for each candidate DC
location j.

First, consider the problem (PRj(λ)), which is actually a
special case of (Pj(λ)) when Xj ) 1. The formulation for a
specific j* is given as

(PRj*(λ)) V̂j* )Min fj* +∑
i∈ I

(d̂ij* - λi)Yij* +Kj*Z1j* +

qZ2j* (27)

s.t.

Yij*e 1, ∀ i ∈ I

-Z1j*
2 +∑

i∈ I

µiYij*e 0

-Z2j*
2 +∑

i∈ I

σ̂i
2Yij*e 0

Yij*g 0, ∀ i ∈ I

Z1j*g 0, Z2j*g 0

where V̂j is denoted as the globally optimal objective function
value of the problem (PRj(λ)).

Note that the Xj variable does not appear in subproblem
(PRj(λ)). Therefore, the minimum objective function value of
subproblem (PRj(λ)) is equal to the minimum objective function
value of problem (Pj(λ)) when Xj ) 1. However, it is not always
the same as the globally minimum objective function value of
problem (Pj(λ)), because (Pj(λ)) could be globally optimal when
Xj ) 0.

For each fixed value of the Lagrange multiplier λi, if the
globally minimum objective function value of the Lagrange
subproblem (PRj(λ)) is negative, it means that when Xj ) 1 the
minimum objective function value of problem (Pj(λ)) is negative.
Because we know when Xj ) 0 the objective function value of
problem (Pj(λ)) is 0, it follows that, under this value of the
Lagrange multiplier, the globally minimum objective function
value of problem (Pj(λ)) is the same as the minimum objective
function value of problem (PRj(λ)), which is a negative value.
Therefore, it is optimal to have Xj ) 1 under this value of the
Lagrange multiplier.

On the other hand, if the minimum objective function value
of problem (PRj(λ)) is positive, it means that when Xj ) 1, the
optimal objective function value of problem (Pj(λ)) could not
be negative. Thus the optimal objective function value of
problem (Pj(λ)) would be 0 when Xj ) 0 (because if Xj ) 1 the
minimum objective function value would be positive, as given
in the objective function value of problem (PRj(λ)).

A possible extreme case is that the minimum objective
function values of all the Lagrangean subproblems (PRj(λ)) are
positive (for example, λi ) 0, i ∈ I). In this case, it means that
the globally minimum objective function values of problem
(Pj(λ)) are all 0; i.e., we do not select any DC. To satisfy the
implied constraint (26) that we need to select at least one DC,
we just install the DC j with the smallest objective function
value, though this value is positive. By using the relationship
between problems (PRj(λ)) and (Pj(λ)), we can solve (PRj(λ))
instead of (Pj(λ)) for equivalent optimality.

Therefore, the algorithm for solving the Lagrangean relaxation
subproblems is as follows. For each fixed value of λi, we solve
PRj(λ) for every candidate DC location j. Then we select the
DCs in candidate location j (i.e., let Xj ) 1), for which V̂j e 0.
For all the remaining DCs for which V̂j > 0, we do not select
them and set Xj ) 0. On the other hand, if all the V̂j > 0, ∀ j
∈ J, we select only one DC with the minimum V̂j, i.e., Xj* ) 1
for the j* such that V̂j* ) minj∈J{V̂j}.

By doing this at each iteration of the Lagrangean relaxation
(for each value of the multiplier λi), we ensure that the optimal
solution always satisfies ∑j∈J Xj g 1. Thus the globally optimal
objective function of (P(λ)) can be recalculated as

V) ∑
j∈ J,Xj)1

V̂j +∑
i∈ I

λi (28)

5.4.3. Obtaining Feasible Solutions. As the original model
(P2) has very few constraints, there are several methods to obtain
a feasible solution for the problem.

7808 Ind. Eng. Chem. Res., Vol. 47, No. 20, 2008



The initial feasible solution can be obtained with the following
two methods:

The first method is to select a DC, and then assign all the
retailers to this DC; i.e., pick up a j* ∈ J, and let Xj* ) 1,
Yij* ) 1,∀ i∈ I. This method provides a simple way for
obtaining a feasible solution, and the resulting objective
function value provides a valid upper bound of the global
optimal objective function value.

The second method is to solve the problem (P2) with an
MINLP solver, possibly using Algorithm 1 to obtain a near-
optimal solution, which is also a feasible solution of the
original problem. This usually provides a “tighter” upper
bound than the one obtained with the first method.

To obtain a feasible solution during the iterations, we first
fix the values of the design variables (Xj) at the optimal values
of the Lagrangean relaxation subproblems, and then solve
the original model (P2) with a nonlinear programming (NLP)
solver (not necessarily a global solver). The optimal values
of the assignment variables (Yij) in the Lagrangean relaxation
subproblems are used as the initial values in the nonlinear
optimization procedure. Nonlinear solvers such as MINOS,
CONOPT, SNOPT, KNITRO, and IPOPT can be used in this
step.

Note that solving (P2) with fixed values of Xj variables
using a local or global NLP solver guarantees that the feasible
solutions generated in this step have all the Yij variables at
integer values based on Proposition 2 (see Appendix A for
details).

5.4.4. The Solution Algorithm. To summarize, the solution
algorithm is as follows:

Algorithm 2: (Lagrangean Relaxation Algorithm)
Step 1 (Initialization): For the initial value of the multiplier

λ1 of constraint (8), use an arbitrary guess, or the multiplier

values corresponding to a local optimum of the NLP
relaxation of model (P2). Let the incumbent upper bound be
UB ) +∞, lower bound be LB ) -∞, and iteration number
be t ) 1. Set the step length parameter θ ) 2.

Step 2: Solve the modified Lagrangean relaxation program
(PRj(λt)) with fixed Lagrangean multiplier vector λt for all j
using a global optimization solver (e.g., BARON). Denote
the optimal objective function value as V̂j (λt) and the optimal
solutions as Ŷij(λt).

If V̂j(λt) > 0, ∀ j ∈ J, let Xj*(λt) ) 1 for the j* such that
V̂j*(λt) ) minj ∈J{V̂j(λt)}.

Else, let Xj(λt) ) 1 for all j with V̂j(λt) e 0, and Xj(λt) )
0 for all j such that V̂j(λt) > 0. Calculate

V(λt)) ∑
j∈ J,Xj(λt))1

V̂j +∑
i∈ I

λi
t

If V(λt) > LB, update the lower bound by setting LB ) V(λt).
If more than two iterations of the subgradient procedure20

are performed without an increment of LB, then halve the
step length parameter by setting θ ) θ/2.

Step 3: Fixing the design variable values as Xj ) Xj(λt) and
using Ŷij(λt) as the initial values of the assignment variables Yij,
solve problem (P(λt)) in the reduced space with fixed λt and
Xj(λt) using an NLP solver (local or global). Denote the optimal
solution as Yij(λt) and the optimal objective function value as
Vj(λt).

If Vj (λt) < UB, update the upper bound by setting UB )
Vj (λt).

Step 4: Calculate the subgradient (Gi) using

Gi
t ) 1-∑

j∈ J

Ŷij(λ
t), i ∈ I (29)

Compute the step size T:20,21

Tt ) θ(UB-LB)

∑
i∈ I

(Gi
t)2

(30)

Update the multipliers:

λt+1 )max{0, λt + TtGt} (31)

Step 5: If gap ) (UB - LB)/UB < tolerance (e.g., 10-5), or
||λt+1 - λt||2 < tolerance (e.g., 10-3) or the maximum number
of iterations has been reached, set UB as the optimal objective
function value, and set Xj(λt) and Yij(λt) as the optimal solution.

Else, increment t as t + 1; go to Step 2.
We should note that the above algorithm is guaranteed to

provide rigorous lower bounds in Step 2 since the subprob-
lems are globally optimized. Also, the feasible solution

Table 1. Comparison Result for the Illustrative Example

transportation
cost weight
factor (�)

inventory
cost weight
factor (θ)

objective
function (Cost) no. DCs

network
structure

0.01 0.01 2260.26 2 Figure 7a
0.1 0.01 8122.93 3 Figure 7b
0.001 0.01 1099.25 1 Figure 7c
0.01 0.1 5359.18 1 Figure 7d
0.01 0.001 1341.04 3 Figure 7e

Table 2. Model Statistics of Instance for n Retailer Locations (and n
Candidate Distribution Center Locations)

(P0) (P1) (P2) (P3) (PRj(λ))

no. of discrete variables n2 + n n n n 0
no. of continuous variables 0 n2 n2 + 2n n2 + 2n n+2
no. of constraints n2 + n n2 + n n2 + 3n n2 + 3n 2

Table 3. Comparison of the Optimal Objective Function Values for Solving Different Problems with Different Solvers and Algorithms

solving MINLP
problem (P1) directly

solving MINLP
problem (P2) directly

Algorithm 1 for
MINLP problem (P2)

no. retailers � θ DICOPT SBB DICOPT SBB MILP relaxation (P3) SBB DICOPT BARON

33 0.001 0.1 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 398.64 398.64 398.64 398.64
33 0.001 0.5 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 580.46 580.46 580.46 580.46
33 0.005 0.1 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 890.44 1023.00 1023.00 1023.00
33 0.005 0.5 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 1072.25 1384.03 1384.03 1384.03
88 0.001 0.1 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 837.68 935.02 935.02 867.55a

88 0.001 0.5 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 1161.12 1386.28 1386.28 1295.02a

88 0.005 0.1 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 1956.30 2297.74 2297.74 2297.80a

88 0.005 0.5 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 2279.74 3082.19 3082.19 3022.67a

150 0.001 0.5 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 1674.08 2205.37 2205.37 1847.93a

150 0.005 0.1 loc. infeas. loc. infeas. loc. infeas. loc. infeas. 3107.87 4069.09 4069.09 3689.71a

a Suboptimal solution obtained with BARON for 10 h limit. Detailed upper and lower bounds are reported in Table 5.
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generated in Step 3 has all the Yij variables at integer values
as we mentioned in section 5.4.3. Thus, the solution obtained
by using this algorithm for problem (P2) is also a feasible
solution of problem (P1). Due to the duality gap, the above
algorithm must be stopped after a finite number of iterations.
As will be shown under Computational Results, the duality
gaps are quite small.

6. Illustrative Example

To illustrate the application of this model, we consider a small
illustrative example for the supply chain of liquid oxygen (LOX)
consisting of one plant, three potential DCs, and six customers
as given in Figure 5. The triechelon “plant-DC-customer”
supply chain is similar to the “supplier-DC-retailer” network
that we discussed before, and the joint supply chain design and

Table 4. Comparison of Computational Results for Solving Model (P2) with Different Algorithms and Solvers

Algorithm 1 Algorithm 2

Bonmin (IPOPT) DICOPT (CONOPT) SBB (CONOPT) BARON (global optimum) BARON + CONOPT Lagrangean

no. retailers � θ obj fun. time (s) obj fun. time (s) obj fun. time (s) obj fun. time (s) obj fun. time (s)

33 0.001 0.1 398.64 10.125 398.64 0.22 398.64 0.20 398.64 53.31 398.64 15.8
33 0.001 0.2 457.61 366.97 457.61 0.22 457.61 0.25 457.61 54.12 457.61 16.8
33 0.001 0.5 580.46 496.281 580.46 0.23 580.46 0.22 580.46 74.27 580.46 17.9
33 0.001 1.0 728.21 227.828 728.21 0.17 728.21 0.17 728.21 39.14 728.21 15.85
33 0.001 5.0 1460.40 235.765 1460.40 0.18 1460.40 0.20 1460.40 93.22 1460.40 37.28
33 0.001 0.1 398.64 10.125 398.64 0.22 398.64 0.20 398.64 53.31 398.64 15.8
33 0.003 0.1 770.26 274.078 770.26 0.23 770.26 0.27 734.60 75.67 734.60 42.79
33 0.005 0.1 1023.00 244.641 1023.00 0.72 1023.00 0.72 1007.31a >10 h 1006.01 90.85
33 0.008 0.1 1248.59 333.953 1248.59 0.80 1248.59 0.80 1249.37a >10 h 1248.59 53.13
33 0.010 0.1 1418.57 201.610 1418.57 0.80 1418.57 0.76 1398.54a >10 h 1398.39 92.74
88 0.001 0.1 b b 935.02 20.89 935.02 20.94 867.55a >10 h 867.55 356.1
88 0.001 0.5 b b 1386.28 42.16 1386.28 38.50 1295.02a >10 h 1230.99 322.54
88 0.005 0.1 b b 2297.74 42.11 2297.74 42.16 2297.80a >10 h 2284.06 840.28
88 0.005 0.5 b b 3082.19 42.35 3082.19 42.38 3022.67a >10 h 2918.3 934.85
150 0.001 0.5 b b 2205.37 229.57 2205.37 228.31 1847.93a >10 h 1847.93 659.1
150 0.005 0.1 b b 3689.71 397.88 3689.71 398.34 3689.71a >10 h 3689.71 3061.2

a Suboptimal solution obtained with BARON for 10 h limit. Detailed upper and lower bounds are reported in Table 5. b Data not available due to
solver failure.

Table 5. Comparison of Bounds by Using the Lagrangean Heuristic Algorithm and Global Optimizer BARON

Lagrangean relaxation (Algorithm 2) BARON (global optimum)

no. retailers � θ upper bound lower bound gap (%) iterations time (s) upper bound lower bound optimality gap (%) time (s)

33 0.001 0.1 398.64 398.64 0 10 15.8 398.64 398.64 0 53.31
33 0.001 0.2 457.61 457.61 0 6 16.8 457.61 457.61 0 54.12
33 0.001 0.5 580.46 580.46 0 6 17.9 580.46 580.46 0 74.27
33 0.001 1.0 728.21 728.21 0 6 15.85 728.21 728.21 0 39.14
33 0.001 5.0 1460.40 1460.40 0 13 37.28 1460.40 1460.40 0 93.22
33 0.001 0.1 398.64 398.64 0 10 15.80 398.64 398.64 0 53.31
33 0.003 0.1 734.60 734.60 0 16 42.79 734.60 734.60 0 75.67
33 0.005 0.1 1006.01 1004.53 0.147 32 90.85 1007.31a 965.29 4.353 36 000
33 0.008 0.1 1248.59 1248.59 0 19 53.13 1249.37a 1215.12 2.819 36 000
33 0.010 0.1 1398.39 1397.7 0.049 33 92.74 1398.54a 1364.82 2.471 36 000
88 0.001 0.1 867.55 867.54 0.001 21 356.1 867.55a 837.68 3.566 36 000
88 0.001 0.5 1230.99 1223.46 0.615 24 322.54 1295.02a 1165.15 11.146 36 000
88 0.005 0.1 2284.06 2280.74 0.146 55 840.28 2297.80a 2075.51 10.710 36 000
88 0.005 0.5 2918.3 2903.38 0.514 51 934.85 3022.67a 2417.06 25.056 36 000
150 0.001 0.5 1847.93 1847.25 0.037 13 659.1 1847.93a 1674.08 10.385 36 000
150 0.005 0.1 3689.71 3648.4 1.132 53 3061.2 3689.71a 3290.18 12.143 36 000

a Suboptimal solution obtained with BARON for 10 h limit.

Figure 5. LOX supply chain network superstructure for the illustrative
example.

Figure 6. Optimal network structure for the LOX supply chain.
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inventory management model can be also used to minimize total
network design, transportation, and inventory costs.

6.1. Illustrative Example for Industrial Application. We
first consider an instance to illustrate the application of the joint
supply chain design and inventory management model. In this
instance, the fixed cost to install a DC (fj) is $10,000/year, and
the fixed cost for ordering from a supplier (Fj) is $100/
replenishment. The order lead time for all the DCs are 7 days,
and we consider 97.5% service level; thus the associated service
level parameter zR is 1.96. We consider 365 days in a year, and
the annual inventory holding for LOX is $3.65/L; i.e., the daily
inventory holding cost is $0.01/L. Both weight parameters �
and θ are set to 1. The remaining data for demand uncertainty
and transportation costs are given in Tables B1, B2, and B3 in
Appendix B.

We solve model (P2) directly to obtain the global optimum
by using the BARON solver with GAMS,50 because the problem
only includes three binary variables, 24 continuous variables,
and 30 constraints. The resulting optimal supply chain is given
in Figure 6. We can see that only two DCs are installed, and
they both serve the nearest three customers. The optimal
replenishment number for DC1 is around 44 times, and for DC3
it is around 57 times. This means that 108,770 L of LOX is
shipped from the plant to DC1 in 44 shipments, i.e., roughly
one shipment every 8 days, and 182,865 L of LOX is shipped
from the plant to DC3 with 57 shipments, i.e., roughly one
shipment every 6 days. The yearly expected flows of the
corresponding transportation links are given in Figure 6. The
optimal total cost is $366,624.27/year, which includes $200,000/
year for installing DC1 and DC3, $65,320.40/year for the
transportation cost from the DCs to customers, $77,444.86/year
for the transportation cost from the plant to DCs, $10,163.62/
year for fixed ordering cost, $10,301.48/year for the cost of
working inventory, and $3,393.91/year for the cost of safety
stocks in the two installed DCs. The major trade-off for this
instance is between DC installation costs, transportation costs,
and inventory costs.

6.2. Illustrative Example for the Key Trade-offs. To better
illustrate the trade-offs in this problem, we consider different
weighted parameters for the transportation and inventory costs.
All the data for demand uncertainty and transportation costs
are the same as for the previous example and given in Tables
B1, B2, and B3 in Appendix B. Other important model
coefficients for instances discussed in this section are given in
Table B4 in Appendix B. Note that, to reveal the trade-offs
and using different weighted parameters, the units of some
parameters are removed for scaling purpose.

GAMS/BARON is also used to solve model (P2) directly
for obtaining global optimal solutions. We first consider a base
case with the transportation cost and inventory cost weighted
factor as � ) 0.01 and θ ) 0.01, and then consider different
values of weights.

The results for different instances are given in Table 1, and
their associated optimal supply chain network structures are
given in Figure 7. We can see that, in the base case, only two
DCs are selected to install and they are connected to three
retailers respectively. When we increase the transportation cost
factor to � ) 0.1, all three DCs are installed and each of them
serves two retailers (Figure 7b). If we decrease the transportation
cost factor to � ) 0.001, only DC3 is selected to be installed
and it serves all the retailers. Thus, the larger the weighted factor
for transportation costs �, the more DCs are installed. On the
other hand, when we fix the transportation cost factor � ) 0.01,
and consider different values of the inventory cost factor θ, we
can similarly find out from Figure 7d,e that the larger weighted
factor for inventory costs, the fewer DCs are installed.

Based on this analysis, we obtain a conclusion similar to that
of Shen et al.,19 that the more DCs are installed, the more
transportation costs are potentially reduced, but the less inven-
tory costs are saved. The major reason for this performance
is that, from an inventory cost aspect, the more retailers are
pooled to a DC, the more cost savings can be achieved, but
from a transportation cost viewpoint, installing more DCs to
serve different retailers may reduce the total transportation cost.
Thus, the trade-off between inventory and transportation costs
is established and reflects the number of DCs besides the trade-
offs for supply chain design costs and operation costs.

Figure 7. Optimal LOX supply chain network structure of the illustrative
example for different transportation cost and inventory cost weighted
parameters. (a) � ) 0.01, θ ) 0.01, Cost ) 2260.26 (base case); (b) � )
0.1, θ ) 0.01, Cost ) 8122.93; (c) � ) 0.001, θ ) 0.01, Cost ) 1099.25;
(d) � ) 0.01, θ ) 0.1, Cost ) 5359.18; (e) � ) 0.01, θ ) 0.001, Cost )
1341.04.

Figure 8. Network structure for the case of 33 retailers with � ) 0.001
and θ ) 0.1.
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7. Computational Results

In order to illustrate the applicability of the proposed solution
strategies, we carry out computational experiments for instances
with 33, 88, and 150 retailer locations with different weight
parameters � and θ. In all cases, each retailer location is also a
candidate DC location; i.e., there are as many candidate DC
locations as the retailer locations for each instance. Note that,
in analogy to the industrial gases supply chain introduced in
section 6, the “retailers” correspond to the “customers”.

The model sizes of instancse for n retailer locations (and n
candidate DC locations) are given in Table 2. This means that,
for the largest problem with 150 retailers and 150 candidate
distribution centers, the original INLP problem (P0) includes
22,650 binary variables and 22,650 constraints, while the
reformulated problem (P2) includes only 150 binary variables,
22,800 continuous variables, and 22,950 constraints.

For every retailer i, we set the annual inventory holding cost
h ) 1, the service level parameter zR ) 1.96 (97.5% service
level), the order lead time L ) 7 days, the fixed order cost Fi

) 10, the unit shipping cost (from supplier to retailer) ai ) 5,

and the fixed shipping cost (from supplier to retailer) gi ) 10.
Each retailer location represents a city in the U.S., with mean
demand µi equal to the city population divided by 2000, based
on the data from U.S. Census 2000.54 The standard deviation-
to-mean ratio of each customer demand σi/µi is generated
uniformly on U[0,0.3], and the fixed DC installation cost fi is
generated uniformly on U[90,110].

All the instances are modeled with GAMS50 and solved with
solvers including DICOPT, SBB, Bonmin, and BARON on an
Intel 3.2 GHz machine with 512 MB RAM.

Table 3 shows the optimal objective function values for
solving problems (P1) and (P2) directly and with Algorithm 1
by using different solvers, including the outer-approximation
algorithm in solver DICOPT, the branch and bound method in
solver SBB, and the global optimization solver BARON. We
can see that, for all the instances we considered, problems (P1)
and (P2) cannot be solved directly by using MINLP solvers
such as DICOPT and SBB. This is presumably due to the
unbounded gradient when solving the NLP relaxation of (P1)
and (P2). In contrast, with the proposed heuristic algorithm 1

Figure 9. Results with different θ values for the case of 33 retailers, � ) 0.001.
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which involves the solution of (P3) and (P2), we obtain “good-
quality” solutions by using all the solvers. It is interesting to
note that, for all the computational instances, the optimal
solutions are found in the NLP relaxation step. This shows that
the NLP relaxation of the MINLP problems (P1) and (P2) is
quite effective in practice, although theoretically it is not
guaranteed to yield integer solutions. Similar conclusions are
also reported by Shen et al.,19 Cornuejols et al.,34 Conn and
Cornuejols.35

Table 4 shows the detailed computational times and the
objective function values from the computational experiments
using different algorithms and solvers to solve instances ranging
from 33 to 150 retailer locations with different weight param-
eters. All the instances are solved with Algorithm 1 by using
the global optimization solver BARON and MINLP solvers that
rely on convexity assumptions (Bonmin, DICOPT, SBB) with
default options, and the proposed Lagrangean heuristic algorithm
(Algorithm 2) of which the Lagrangean subproblems (for lower
bounds) are solved with the global optimization solver BARON
and the feasibility subproblems (for upper bounds) are solved
with the NLP solver CONOPT. For comparison purposes, all
the instances are also solved with the global optimization solver

BARON to obtain global optimal solutions, although BARON
failed to terminate the search after more than 10 h for large
instances. By comparing the solution and the associated
computational times, we can see that both Algorithms 1 and 2
can obtain good-quality solutions that are equal to, or very close
to, the global optimum.

Algorithm 1 requires much less computational time, and for
the smaller instances the solutions obtained are quite close to
the global optimum. Note that, for all the instances where we
can obtain an exact global optimum, the solutions from
Algorithm 1 are within 5% of the global optimal solution.

The Lagrangean relaxation algorithm requires longer com-
putational times than Algorithm 1, but the quality of the
solutions is significantly improved. The detailed computational
results of the Lagrangean relaxation algorithm and the global
optimization solver BARON are given in Table 5, where the
solutions and computational times are compared. For all
instances, the Lagrangean relaxation algorithm requires much
shorter computational times than using BARON to obtain the
same quality solutions. The instances that BARON can solve
to global optimality in less than 10 h are solved more efficiently
by using the Lagrangean-based algorithm in shorter computa-

Figure 10. Results with different � values for the case of 33 retailers, θ ) 0.1.
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tional times and with 0% optimality gap. For the remaining
large-scale instances that BARON cannot close the gaps in 10 h,
the optimality gaps of the Lagrangean-based algorithm are much
smaller (usually less than 1.2%) than the optimality gaps by
using BARON for 10 h.

The results show that good solutions without excessive
computational times can be obtained with the proposed Algo-
rithm 1, and near-global solutions can be obtained with the
proposed Lagrangean relaxation method (Algorithm 2).

The network structure of the 33 retailer case with � ) 0.001
and θ ) 0.1 is given in Figure 8. Figures 9 and 10 show how
the objective function values and computational times change
as the weights for transportation costs (�) and inventory costs
(θ) change. We can see that large weights will lead to an
increase of the objective function value for both cases. From
Figure 9, we can see that global optimal solutions can be
obtained by using either Algorithm 1 or Algorithm 2, but
Algorithm 1 requires less computational time. From Figure 10,
we can see that although Algorithm 1 with MINLP solvers that
rely on convexity assumptions always converges more quickly,
the optimal objective function values are often higher. Compared
with the global optimizer BARON, the proposed Lagrangean
relaxation algorithm can converge to the global optimum in
much shorter times for 33 retailers, θ ) 0.1, and different �
values.

8. Conclusion

This paper has proposed two algorithms for solving the joint
supply chain network design and stochastic inventory manage-
ment model presented by Shen et al.19 The first algorithm is a
heuristic method based on using MINLP optimization methods
that rely on assuming convexity in the functions. Computational
experiments show that this heuristic algorithm, which includes
an initialization scheme, can obtain good-quality solutions
(typically within 5% of the global optimum). The second
algorithm is a heuristic Lagrangean relaxation and decomposi-
tion algorithm for obtaining global or near-global optimal
solutions. Although there are duality gaps due to the nonconvex
nature of the model, extensive numerical examples suggest that
the solutions obtained with this algorithm are typically within
1.2% of the global optimum. Moreover, the second algorithm
requires much less computational effort than the global opti-
mization solver BARON.

This research can be extended to consider capacity constraints,
as both the supplier(s) and the distribution centers are assumed
to have infinite capacity in this model. It is likely that Proposition
1 will not hold for the joint capacitated facility location and
inventory management models due to the additional capacitated
constraints. However, the proposed algorithms can still be used
to solve the relaxed problems when branching on the assignment
variables.

Another possible extension is to consider different lead times
for the distribution centers. In this model the lead times from
supplier(s) to all the distribution centers are assumed to be the
same, so cost saving can be achieved by risk pooling. If the
replenishment lead times of each distribution centers are
different, pooling the customers may or may not save costs. It
would be also interesting to see how the supply chain network
structure and the associated inventory levels change, as the lead
time at each distribution center changes, especially when the
addressing responsiveness issue in the supply chain network
design.
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Appendix A: Properties of Model (P0)

In this section, we will present some properties of the INLP
model (P0). Especially, we show in Proposition 1 that the binary
variables for assignment decisions (Yij) in the model (P0) can
be relaxed as continuous variables while treating the Xj variables
as integer without changing the global optimal integer solution
or a local optimal solution for fixed 0-1 values for Xj.

Let us first consider the following relaxation problem (P1)
with the assignment variables Yij in (P0) relaxed as continuous
variables as in constraint (14).

(P1) Min ∑
j∈ J

(fjXj +∑
i∈ I

d̂ijYij +Kj�∑
i∈ I

µiYij +

q�∑
i∈ I

σˆi
2Yij)

(13)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (8)

YijeXj, ∀ i ∈ I, ∀ j ∈ J (9)

Xj ∈ {0, 1}, ∀ j ∈ J (10)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (14)

We also consider problem (P1) in the reduced space where
all the binary variables Xj are fixed to be Xj

/ ) 0 or 1, ∀ j ∈ J.
We denote this problem as (AP1).

(AP1) Min: ∑
j∈ J

(fjXj
/+∑

i∈ I

ŶijYij +Kj�∑
i∈ I

µiYij +

q�∑
i∈ I

σ̂i
2Yij) (A1)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (A2)

YijeXj
/, ∀ i ∈ I, ∀ j ∈ J (A3)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (A4)

Problem (P1) is an MINLP problem, and problem (AP1) is
a nonlinear programming (NLP) problem with all the binary
variables Xj in (P1) fixed to certain values. Note that problem
(AP1) has the following properties given in Lemma 1 and
Lemma 2.

Lemma 1. Problem (AP1) is a concaVe minimization problem
defined oVer a polyhedron.

Proof:
It is trivial to see that all the constraints of problem (AP1)

are linear; therefore the linear constraints correspond to a
polyhedron.

Next, we prove that the objective function given in (A1) is
concave. Let us assume Y1 ) {Yij

1|i ∈ I, j ∈ J} and Y2 ) {Yij
2|i

∈ I, j ∈ J} are two feasible solutions satisfying the constraints
of problem (AP1). Let V1 and V2 be the associated objective
function values; we have
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V1 )∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ijYij
1 +Kj�∑

i∈ I

µiYij
1 + q�∑

i∈ I

σ̂i
2Yij

1)
(A5)

V2 )∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ijYij
2 +Kj�∑

i∈ I

µiYij
2 + q�∑

i∈ I

σ̂i
2Yij

2)
(A6)

Let 0 e t e 1, and Y0 ) tY1 + (1 - t)Y2 ) {Yij
0 ) tYij

1 + (1
- t)Yij

2|i ∈ I, j ∈ J}. Since all the constraints of problem (AP1)
are linear, it is trivial to show Y0 is also a feasible solution of
problem (AP1). Let V0 be the associated objective function
value. We then have

V0 )∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ijYij
0 +Kj�∑

i∈ I

µiYij
0 + q�∑

i∈ I

σ̂i
2Yij

0))
∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ij[tYij
1 + (1- t)Yij

2]+

Kj�∑
i∈ I

µi[tYij
1 + (1- t)Yij

2]+ q�∑
i∈ I

σ̂i
2[tYij

1 + (1- t)Yij
2])

(A7)

Thus we have

V0 - [tV1 + (1- t)V2])

∑
j∈ J

Kj(�t∑
i∈ I

(µiYij
1)+ (1- t)∑

i∈ I

(µiYij
2)- [t�∑

i∈ I

µiYij
1 + (1-

t)�∑
i∈ I

µiYij
2])+∑

j∈ J

q(�[t∑
i∈ I

(σ̂i
2Yij

1)+ (1- t)∑
i∈ I

(σ̂i
2Yij

2)] -
[t�∑

i∈ I

σ̂i
2Yij

2 + (1- t)�∑
i∈ I

σi
2Yij

2]) (A8)

Now consider the following function:

f(t)) √ta+ (1- t)b- [t√a+ (1- t)√b] (A9)

where 0 e t e 1 and a g 0, b g 0. Thus, we have

f(t)) √ta+ (1- t)b- [t√a+ (1- t)√b]

) ta+ (1- t)b- [t√a+ (1- t)√b]2

√ta+ (1- t)b+ [t√a+ (1- t)√b]

) t(1- t)(√a- √b)2

√ta+ (1- t)b+ [t√a+ (1- t)√b]
g 0 (A10)

Comparing (A9) and (A10) with each term in (A8), it follows
that

V0 - [tV1 + (1- t)V2]g 0

Therefore, the objective function of problem (AP1) is a concave
function. 9

Lemma 2. The Yij Variables take on integer Values (0 or 1)
for any local or global optimal solution of problem (AP1).

Proof:
Based on Lemma 1, we know that problem (AP1) corre-

sponds to the minimization of a concave function over a
polyhedron. As proved by Falk and Hoffmann,55 any local or
global optimal solution of this problem always lies on a vertex
of the polyhedron.

Furthermore, it is trivial to see that the coefficient matrix of
constraint (A2) is totally unimodular,56 while constraints (A3)
and (A4) only provide integer bounds of the Yij variables. Thus,
constraints (A2), (A3), and (A4) define an integral polyhedron,
of which the extreme points are at the integer values (0 or 1) of

the Yij variables.56 Therefore, all the Yij variables equal 0 or 1
for any local or global optimal solution of problem (AP1). 9

Proposition 1. The continuous Variables Yij yield 0-1 integer
Values when (P0) is globally optimized or locally optimized for
fixed 0-1 Value for Xj.

Proof:
The MINLP problem (P1) is a relaxation of the INLP problem

(P0) by treating all the Yij as continuous variables, while problem
(AP1) is an NLP subproblem of (P1) with a fixed value of the
integer variables Xj. Based on Lemma 2, we can then conclude
that when (P1) is globally optimized or locally optimized for
fixed 0-1 values for Xj, all the Yij variables take integer values
(0 or 1). 9

Proposition 2. The global optimal solution of problem (P2),
or a local optimal solution with fixed 0-1 Value for Xj, has all
the continuous Variables Yij take on integer Value (0 or 1).

Proof:
Similarly, we consider problem (P2) in the reduced space

where all the binary variables Xj are fixed to be Xj
/ ) 0 or 1, ∀

j ∈ J. We denote this problem as (AP2).

(AP2) Min ∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ijYij +KjZ1j + qZ2j) (A11)

s.t.

∑
j∈ J

Yij ) 1, ∀ i ∈ I (A2)

YijeXj
/, ∀ i ∈ I, ∀ j ∈ J (A3)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (A4)

-Z1j
2 +∑

i∈ I

µiYije 0, ∀ j ∈ J (A12)

-Z2j
2 +∑

i∈ I

σ̂i
2Yije 0, ∀ j ∈ J (A13)

Z1jg 0, ∀ j ∈ J (A14)

Z2jg 0, ∀ j ∈ J (A15)

We associate the Lagrange multiplier λi with constraint (A2),
µij with constraint (A3), tij with constraint (A4), Fj with constraint
(A12), γj with constraint (A13), ςj with constraint (A14), and
�j with constraint (A15). The Lagrange function for this problem
is

L)∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ijYij +KjZ1j + qZ2j)+∑
i∈ I

λi(1-∑
j∈ J

Yij)+
∑
i∈ I

∑
j∈ J

µij(Yij -Xj
/)-∑

i∈ I
∑
j∈ J

tijYij +∑
j∈ J

Fj(-Z1j
2 +∑

i∈ I

µiYij)+
∑
j∈ J

γj(-Z2j
2 +∑

i∈ I

σ̂i
2Yij)-∑

j∈ J

ςjZ1j -∑
j∈ J

�jZ2j

Then the KKT conditions for this problem are

∂L
∂Yij

) d̂ij - λi + µij - tij +Fjµi + γjσ̂i
2 ) 0, ∀ i ∈ I, j ∈ J

(A16)

∂L
∂Z1j

)Kj - 2FjZ1j - ςj ) 0, ∀ j ∈ J (A17)

∂L
∂Z2j

) q- 2γjZ2j - �j ) 0, ∀ j ∈ J (A18)

µij(Yij -Xj
/)) 0, ∀ i ∈ I, ∀ j ∈ J (A19)

tijYij ) 0, ∀ i ∈ I, ∀ j ∈ J (A20)
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Fj(-Z1j
2 +∑

i∈ I

µiYij)) 0, ∀ j ∈ J (A21)

γj(-Z2j
2 +∑

i∈ I

σ̂i
2Yij)) 0, ∀ j ∈ J (A22)

ςjZ1j ) 0, ∀ j ∈ J (A23)

�jZ2j ) 0, ∀ j ∈ J (A24)

∑
j∈ J

Yij ) 1, ∀ i ∈ I (A2)

YijeXj
/, ∀ i ∈ I, ∀ j ∈ J (A3)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (A4)

-Z1j
2 +∑

i∈ I

µiYije 0, ∀ j ∈ J (A12)

-Z2j
2 +∑

i∈ I

σ̂i
2Yije 0, ∀ j ∈ J (A13)

Z1jg 0, ∀ j ∈ J (A14)

Z2jg 0, ∀ j ∈ J (A15)

λig 0, µijg 0, tijg 0, ∀ i ∈ I, ∀ j ∈ J (A25)

Fjg 0, γjg 0, ςjg 0, �jg 0, ∀ j ∈ J (A26)

On the other hand, for problem (AP1), if we similarly
associate Lagrange multiplier λi with constraint (A2), µij with
constraint (A3), and tij with constraint (A4), the Lagrange
function for problem (AP1) is

L′ )∑
j∈ J

(fjXj
/+∑

i∈ I

d̂ijYij +Kj�∑
i∈ I

µiYij + q�∑
i∈ I

σ̂i
2Yij)+

∑
i∈ I

λi(1-∑
j∈ J

Yij)+∑
i∈ I

∑
j∈ J

µij(Yij -Xj
/)-∑

i∈ I
∑
j∈ J

tijYij

Then the KKT conditions for this problem are

∂L′
∂Yij

) d̂ij +
Kjµi

2�∑
i∈ I

µiYij

+
qσ̂i

2

2�∑
i∈ I

σ̂i
2Yij

- λi + µij - tij )

0, ∀ i ∈ I, ∀ j ∈ J (A27)

µij(Yij -Xj
/)) 0, ∀ i ∈ I, ∀ j ∈ J (A19)

tijYij ) 0, ∀ i ∈ I, ∀ j ∈ J (A20)

∑
j∈ J

Yij ) 1, ∀ i ∈ I (A2)

YijeXj
/, ∀ i ∈ I, ∀ j ∈ J (A3)

Yijg 0, ∀ i ∈ I, ∀ j ∈ J (A4)

λig 0, µijg 0, tijg 0, ∀ i ∈ I, ∀ j ∈ J (A25)

By substituting equations (A17), (A18), (A21), (A22), (A23),
and (A24) into (A27), we can have

∂L′
∂Yij

) d̂ij +
Kjµi

2�∑
i∈ I

µiYij

+
qσ̂i

2

2�∑
i∈ I

σ̂i
2Yij

- λi + µij - tij ) d̂ij -

λi + µij - tij +Fjµi + γjσ̂i
2 ) ∂L

∂Yij

which is the same as (A14).
This then shows that the KKT conditions of problem (AP1)

and (AP2) are equivalent, although due to the square root terms
in (A23) problem (AP1) may have unbounded gradients.

Because we know that all the optimal solutions of problem
(AP1) have Yij taking on integer values 0 or 1, we can conclude
that Yij variables also have integer values when (AP2) is (locally
or globally) optimized. Similarly to Proposition 1, we can
conclude that problem (P2) has all the Yij take on integer values
when it is l globally optimized or locally optimized for fixed
Xj. 9

Appendix B: Data for the Illustrative Examples

Tables B1, B2, B3, and B4 list data for the illustrative examples
in section 6.
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